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DETERMINATtON OF MEAN ORBITAL ELEMENTS FROM 
INDTlAb CQNBITIBWS FOR A VMI MUISTIC TRAJECTORY 

by 
Harvey  Walden 

Goddard Space Flight Center 

INTRODUCTION 

The determination of a set of constants of motion for an orbital satellite theory is a commonly 
encountered problem inasmuch as mathematical theories of satellite motion are  generally  given  as 
functions of  mean orbital elements rather  than osculating  elements.  In practice, it is the set of initial 
conditions of position and  velocity components at a given epoch time that is readily  available, such as 
those arising  from nominal conditions for an orbit insertion maneuver or as the  output  of a stepwise 
numerical integration technique for trajectory prediction. Such initial conditions are  readily  con- 
verted, by  means  of the Keplerian two-body transformations, into osculating orbital elements, but  the 
problem  of producing mean elements for use  as constants of motion in  an analytic development re- 
mains. 

A method has  been  proposed (Reference 1) for  the determination of  mean orbital elements di- 
rectly from initial conditions or Keplerian  osculating elements for the spheroidal theory of satellite 
orbits developed  by  Vinti.  The spheroidal theory (References 2 and 3) provides  an  algorithm for the 
calculation of  an accurate reference orbit  for any  drag-free satellite that moves in the gravitational field 
of  an  axially symmetric oblate planet. As applied to  the actual gravitational potential of the  earth, the 
reference orbit accounts exactly for the effects of  all zonal harmonic terms in the series expansion of 
the geopotential through the third term, and it accounts for  the major portion of the  fourth zonal har- 
monic as  well. The spheroidal theory is applicable to all bounded  orbits of arbitrary inclination and 
eccentricity. The method for the determination of  mean orbital elements for Vinti's satellite theory 
was applied (Reference 1 )  to an actual trajectory corresponding to a near-earth satellite orbit of  me- 
dium inclination and moderately high eccentricity that remained  above the  portion of the atmosphere 
that induces appreciable drag effects. 

A recent paper (Reference 4) describes a  method for the utilization of differential coefficients to 
fit orbital parameters to assumed initial position and  velocity vectors that represent a ballistic trajec- 
tory. This method  adopts an earlier spheroidal satellite theory by Vinti (Reference 5) which does not 
have the advantage of incorporating the effects of the  third zonal harmonic term into  the spheroidal 
potential. Also, the inversion  of the integrals of motion in the form suggested  by  Izsak (Reference 6) 
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for the solution of Vinti’s dynamical problem is utilized for the coordinates, and the  equations  for  the 
velocities are those given by Borchers (Reference 7). However, the method of determination of the 
Izsak-Borchers orbital elements from .initial conditions is nearly identical to the method proposed ear- 
lier (Reference l) in that  both methods are iterative procedures involving a fmt-order Taylor’s  series 
expansion at epoch time that is dependent upon partial derivatives that assume the form of differential 
coefficients. The  minor differences between the two iterative procedures shall be discussed further 
below, but it is to be  emphasized that  the methods are substantially the same. 

The purpose of the present paper, a sequel to the earlier results (Reference l), is to demonstrate 
the feasibility of applying the  method as originally presented to ballistic trajectories. Such trajectories 
are elliptic (or circular) segments of orbital arcs  which eventually intersect the earth’s surface (i.e., 
their “perigee” heights are less than unity when measured in units of earth radii). .These trajectories 
may correspond to the free-flight portion of an ascent to satellite orbit or to a spacecraft reentry into 
the atmosphere. 

DETERMINATION OF MEAN  ORBITAL ELEMENTS 

The constants of the  motion qj (i = 1,2, . . . , 6) ,  which  are the mean orbital elements for Vinti’s 
spheroidal theory of satellite motion, include the following: the semi-major  axis a; the eccentricity e ;  
a parameter S corresponding to sin2 i (where i is the inclination of the orbital plane to  the  Equator) in 
Keplerian  two-body motion; and three parameters PI,  p2, and p3, which correspond to  the negative of 
the time of  passage through perigee 7, to  the argument of perigee o, and to  the right  ascension of  the 
ascending node 52, respectively, in the reduction to Keplerian motion. The given initial conditions for 
a satellite orbit are generally  provided in the form of rectangular inertial position components xo, y o ,  
and zo and  velocity components xo ,  y o ,  and io, specified for a particular epoch time to. For  the case 
in  which the given initial conditions are provided in the form of  Keplerian  osculating orbital elements, 
namely, a, e, i, 7, o, and 52, transformation to inertial Cartesian position and  velocity vector compo- 
nents may  be  readily  achieved  by  means of  the usual two-body transformation equations. 

The  problem  of the determination of the proper set  of  mean orbital elements from the given ini- 
tial conditions has  been approached by Vinti (Reference 8) through a method of factorization of two 
quartic polynomials that arise in the invenion of the integrals of motion. This factorization is  carried 
out iteratively, beginning with a zeroth-order solution that corresponds to KepleriG  two-body motion. 
A set of four nonlinear equations that results is solved  by a method of  successive approximations car- 
ried through second order in the oblateness parameter J2/p2 ,  where J2  is the coefficient of the second 
harmonic term in the infinite series expansion for the geopotential and p is the semi-latus rectum of 
the  orbit measured  in units of earth radii.  The second-order transformation equations for the orbital 
elements used in the equations of the final solution for the satellite coordinates and  velocities (Refer- 
ences 9 and 10) are provided explicitly in Reference 8. To obtain the solution to  the nonlinear system 
to arbitrarily high order, a method that applies the Newton-Raphson iteration scheme  has  been pro- 
posed  by  Borchers (Reference 7). 

An alternative method  for  the determination of mean orbital elements for Vinti’s spheroidal satel- 
lite theory that is  based upon differential corrections applied to position and  velocity  residuals at 
epoch time has already been specified (Reference 1). A summary  of this method appears to be in 
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order here. This method is capable of determining mean elements directly from initial conditions, 
eliminating the need for numerical factorization through successive approximation, and it has no con- 
nection to  the traditional differential correction of satellite orbits that utilizes observational data. 

If the Keplerian osculating orbital elements a, e, i, 7, w, and 52 are adopted as the  constants of the 
motion in Vinti's spheroidal satellite theory,  then  the rectangular inertial position and  velocity vectors 
predicted analytically by  the theory for the  epoch time to may be denoted x, y ,  and z and x, 9,  and z .  
These components will differ from  the initial conditions because the spheroidal theory incorporates an 
earth model that is considerably  more sophisticated than  the Keplerian elliptic model.  If one assumes 
that  the required corrections to  the orbital elements are sufficiently small so that their squares and 
higher  powers may be  neglected (as is traditionally the case with linear approximations), the residual 
differences in coordinates and  velocities  may be expressed  by a truncated Taylor's  series  expansion: 

6 

x o - x = c $ A q i ,  
i=l 

6 

20 - 2 =x% A q i .  
i=l 

Here the predicted values x ,  y ,  and z and x, j ,  and 2. are  considered functions of the six independent 
variables 4,. (i = 1,2, . . . ,6) that are to be  improved  by the respective additive increments Aqi ( i  = 1, 
2, . . . ,6).  Note that  the time to has  been omitted as  an independent variable  inasmuch  as it remains 
constant throughout. The 36 differential coefficients appearing  in the Taylor's expansions have  been 
evaluated explicitly (References 1 and 1 1) and retain the accuracies  of the original Vinti orbital theory. 
The  above simultaneous system  of  six linear algebraic equations admits a solution for  the six unknowns 
Aqi that are  used to correct the orbital elements: 

qi' = qi + Aqi , i = 1,2, . . . , 6  

The corrected (primed) orbital elements are then used  in the spheroidal theory to predict analytically 
a new set of position and  velocity vectors at epoch time and to reevaluate the differential coefficients. 
The  process  of  improving the elements is then continued iteratively until the absolute values of  the 
position and  velocity  residuals at epoch time, Ix, - X I ,  Iy, - yl,  . . . , li, - zl, reach some sufficiently 
small predetermined values. 

When the method outlined above  is compared with the method presented by  Allen (Reference 4), 
striking similarities can be  seen. A truncated Taylor's  series expansion is given by Equations 54 and 
55 of Reference 4 which, after elimination of the apparent typographical errors, is 
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where 

In  this Taylor’s expansion, pi = pj(rj) is  a component of  a matrix consisting of  the six Izsak-Borchers 
orbital elements.  These  are  analogous to the mean orbital elements used  in  Vinti’s spheroidal theory, 
but  without the inclusion of  the third zonal harmonic in the reference geopotential (References 5 and 
8). The parameters afe the Keplerian  two-body orbital elements that  one obtains by  fitting to the 
initial vectors,  having set the principal  oblateness parameter J, equal to zero in the Izsak-Borchers 
equations of motion. Also, yi represents  a component  of a matrix which  consists of  the six oblate 
spheroidal coordinates and their time derivatives that are  used  in the solution of the Vinti dynam- 
ical  problem. The differential coefficients ap,/ay, appearing  in this form of the Taylor’s  series  are  in 
some  sense  “inverses” of  the previous  differential  coefficients,  inasmuch  as they consist of  partial de- 
rivatives of the orbital elements with respect to the coordinates and  velocities rather  than  the reverse. 
However, the differential coefficients  are  evaluated by Allen for  the simplified model of  a  spherical 
earth only and do not include any oblateness effects. In  Allen’s  version of iterative improvement, the 
mean orbital elements are improved  indirectly through the residuals Ayj in the oblate spheroidal  coor- 
dinates and velocities,  Le., the differences between the “exact” values r,(P,), based upon the latest cor- 
rected  elements,  and the  approximate values rj($’), based upon the elements of the previous iteration. 
Note also that  the six  Taylor’s  series expansions may be  solved  individually  as independent equations 
rather  than by Gaussian elimination as  a simultaneous system of six linear algebraic equations. 

NUMERICAL APPLICATIONS TO A  BALLISTIC TRAJECTORY 

The iterative method of determining a set of  mean orbital elements from initial conditions for 
Vinti’s  spheroidal satellite theory has  already  been  applied (Reference 1) to an actual satellite orbital 
trajectory that had an inclination of 46 degrees, an eccentricity of 0.24, a  period of 195 minutes, and 
apogee  and  perigee  heights of 4600 and 1300 statute miles,  respectively. The same method is  now to 
be  applied to a ballistic trajectory represented by the initial conditions given  in the first column of 
Table 1 as inertial rectangular coordinates and their time derivatives.  These data are  precisely those 
specified by Allen (Reference 4) with the velocity components converted from units of earth radii per 
second,  as  presumably adopted by Allen, to earth radii per canonical time unit-the latter defined to 
be 806.823 seconds,  as indicated in the  footnote  to Table  1. The second column of  Table 1 provides 
the osculating  Keplerian orbital elements that correspond to  the initial conditions. These  classical 
Keplerian elements were obtained through use  of the two-body equations of motion, with only the 
central term in the geopotential considered. The third column of Table 1 displays the converged  val- 
ues for  the mean set of orbital elements for Vinti’s satellite theory obtained after  two  iterations. A 
measure of the degree of improvement in the orbital elements is provided by Table 2, which  displays 
the residuals  in  position  and  velocity components at  the epoch time.  These  residuals  were obtained by 
the use  of the osculating  Keplerian  elements  initially  and then by the use  of the mean Vinti elements 
obtained  upon convergence after  two  iterations. As an indication of the convergence  speed  of the itera- 
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tive method, Table 3  presents  the residuals  in position and velocity at each iteration, where iteration 0 
corresponds  to  the use  of  Keplerian elements. 

The results of  an improvement in the mean orbital elements for Vinti’s satellite  theory, following 
the use of iterative  factorization of the quartics thou.& second order, are  summarized  in Table 4. The 
initial conditions  for  the ballistic trajectory are identical to those included in Table 1. The second 

Table 1  -Determination of  mean orbital elements from initial conditions. 

Initial Conditions* Osculating 
Vinti Elements* Keplerian Elements* 

Mean 

x = 0.4650 
y = 0.7254 
z = 0.6010 
x = 0.7915 
j ,  = 0.03026 
z = 0.08673 

a = 0.78809935 
e = 0.59910027 

sin2 i = 0.3791  1289 
- T =  1.1628914 
w = -0.66925097 
!2 = 3.0392151 

a = 0.78675654 
e = 0.60188516 
S = 0.37863865 
p1 = 1.1638504 
p2  = -0.69029205 
p 3  = 3.0260546 

*The  position  components x ,  y ,  and z are  in earth  equatorial  radii (e.r.), and  the velocity componentsx,9, and i are  in e.r./c.u.t., where 
1 canonical  unit of time (c.u.t.)  is equal to 806.823 seconds. The semi-major axis a is in e.1.; the  time of perigee  passage 7 and p1 are in 
c.u.t.; and  the  argument of perigee w ,  the right  ascension of the ascending node a ,  p,, and p, are in  radians. 

Table  2-Magnitude of residuals  in position and velocity components. 

Residual* 

~~ 

Initially 
(osculating Keplerian elements) 

25032.8 1 
9598.04 

27478.12 
3282.7721 

5.2298 
6006.7360 

Upon  Convergence 
(mean Vinti elements) 

0.33 
0.14 
0.24 
0.0236 
0.0328 
0.0044 

*The position residuals  are in meters,  and  the velocity  residuals in centimeters  per  second. 

Table  3-Convergence of the computed  position and  velocity to the initial conditions. 

Iteration 

0 
1 
2 

Position Residual* Velocity Residual* 

0.000 085  298 0.000 064  523 
0.000 000 068 0.000 000 051 

*The position residual is defiied by  AX)^ + ( A Y ) ~  + ( A z ) ~  and is given in ex.,  and  the velocity  residual is defined by 
d ( A X ) 2  + (A$)2 + ( A i ) 2  and is given in e.r./c.u.t. 
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column of  Table 4 provides the mean orbital  elements  for Vinti’s satellite  theory  determined  by  iter- 
ative factorization of the  quartic polynomials in the integrals of motion  camed  through second order 
in the earth’s oblateness parameter. The  third  column of Table 4 gives the converged  values for  the 
improved set of  mean orbital  elements, again obtained  after  two  iterations. Table 5 shows the residuals 
in position and velocity components  obtained by  use of the  factored elements initially and then by  use 
of the mean elements  obtained  upon convergence after  two  iterations.  The convergence  of the residuals 
in position and velocity is indicated in Table 6, where iteration 0 now corresponds  to  the use  of the fac- 
tored Vinti orbital elements. Note that “near-convergence” is attained  after only a single iteration. - 

Table 4-Improvement of  mean orbital  elements  after use  of second-order factorization. 

Initial  Conditions* 

x = 0.4650 
y = 0.7254 
z = 0.6010 
2 = 0.7915 
j ,  = 0.03026 
2 = 0.08673 

*See footnote  to Table 1. 

Factored 
Vinti Elements* 

a = 0.78675646 
e = 0.60188502 
S = 0.37864354 

= 1.1638503 

p3 = 3.0260707 
p2 = -0.69029421 

Mean 
Vinti Elements* 

a = 0.78675653 
e = 0.60188516 
S = 0.37863868 

p1 = 1.1638504 
p2 = -0.69029207 
p3 = 3.0260546 

Table  5-Magnitude  of  residuals in position and velocity components. 

Residual* 

IAxl 
lAY I 
lAz I 
lAXl 
l AY I 
IAi I 

*See  footnote  to Table 2. 

Initially 
(factored Vinti elements) 

9  1.43 
34.02 
27.70 

0.4830 
10.8230 
1.3488 

Upon  Convergence 
(mean Vinti elements) 

0.2 1 
0.05 
0.10 
0.0059 
0.01 2  1 
0.0103 

” - - 

Table  6-Convergence  of the  computed  position and velocity to the initial conditions. 

I Iteration 

0 
1 
2 

” 

Position Residual* 

0.000 015  900 
0.000 000 107 
0.000 000 037 

. .  
Velocity  Residual* 

0.000 013  810 
0.000 000 083 
0.000 000 021 

*See  footnote  to Table 3. 
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The  conclusions  reached in the earlier study (Reference 1) are also  valid in the numerical applica- 
tion of the iterative method to a ballistic trajectory. The converged  values of mean orbital elements 
for Vinti’s spheroidal satellite theory, as determined from initial conditions, are  virtually independent 
of whether or  not  the process  of second-order factorization of the quartics is utilized prior to  the iter- 
ative  Taylor’s  expansion. This is  seen from the nearly identical values for the mean Vinti elements pre- 
sented in Tables 1 and 4. Hence, the iterative method of determining mean orbital elements for a 
Vinti ballistic trajectory may  be  used  as a. valid alternative to  the factorization procedure. However,  if 
second-order factorization is applied, then  the mean orbital elements are corrected (through subsequent 
application of the iterative improvement  method) only by increments of the third order  in  the oblate- 
ness parameter. Convergence  of the iterative fitting to initial conditions in position and  velocity  is  ex- 
tremely rapid, and decreases in the residual components to very  close tolerances are  achieved, both 
with and without use  of factorization ‘to determine initial elements. 
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Appendix  A 

In  the  interest of thoroughness, efforts were undertaken to duplicate the numerical calculations 
of  Allen (Reference 4). The following sequence of tabular displays  shows that this effort was, at best, 
only partially successful. In Table A1 appear the adopted ballistic initial conditions  and, in the second 
column, the Keplerian orbital elements associated  by  Allen with the initial conditions. The latter are 
seen to differ substantially from the Keplerian orbital elements given in Table  1. The third  column 
displays the converged  values for  the mean Vinti elements, obtained after  three iterations. 

Table A2 shows the residuals in  position and velocity components  obtained by use of Allen’s 
given osculating  Keplerian elements initially and then by  use of the mean Vinti elements obtained 
upon  convergence after  three  iterations.  The convergence  of the residuals  in position and velocity is 
indicated in  Table A3, where iteration 0 now corresponds to the use  of  Allen’s  given  Keplerian  ele- 
ments. Finally, the converged  values for  the mean Vinti elements, obtained after  three  iterations, 
shown  in the third column of Table A1  may  be contrasted with Allen’s  converged  mean orbital ele- 
ments,  obtained  after  four  iterations.  After  the required manipulations described in the  footnote  to 
Table A1 are performed,  the  latter appear as  follows: a = 0.78681 e.r., e = 0.56072, S = 0.36196, 

= 1.22172 c.u.t., p2 = -0.71421 radian, and p 3  = 2.94749 radians. 
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Table Al-Determination of mean orbital  elements from initial conditions using  given osculating 
Keplerian elements. 

Initial Conditions* Given Osculating 
Keplerian Elements* 

x = 0.4650 
e = 0.55812 y = 0.7254 
a = 0.78771 

S2 = 2.95757 z = 0.08673 
o = -0.73416 j ,  = 0.03026 
-7 = 1.23247 k = 0.791 5 

s in2 i = 0.36201 z = 0.6010 

- i 
. . . - " - - - - . " - - 

Mean 
Vinti Elements* 

a = 0.78675653 
e = 0.601 885 18 
S = 0.37863866 

p1 = 1.1638504 
p2 = -0.6902921  1 
p3 = 3.0260546 

*The  units  for all variables are as indicated  in  the  footnote to Table 1. The given osculating Keplerian elements were obtained  from Allen's 
data  (Reference 4) by the  addition of one  anomalistic  period to  the perigee time  and  by  the  subtraction  of 2n and n from  the  argument 
of perigee and  the  longitude  of  the  node, respectively, at perigee time. 

Table  A2-Magnitude  of  residuals in position and velocity components. 

Residual* Initially Upon  Convergence 
(given osculating Keplerian elements) (mean Vinti elements) 

IAxl 

0.001 5 5396.8830 lAz I 
0.01 80 48612.7070 IAY I 
0.0059  2994.5567 IAkI 
0.10  204  18.46 lAz I 
0.14  14224.53 IAY I 
0.17 20660.69 

." 
*See footnote  to Table 2. 

- 

Table A3-Convergence  of the  computed  position and velocity to  the initial conditions. 

Iteration Position Residual* 

0.005 071 016 
0.003 066  079 

2 0.000 010 031 
3 0.000 000 037 

" 

*See footnote to Table 3. 

Velocity  Residual* 

0.061 987 744 
0.000 820 141 
0.000 005 074 
0.000 000 024 

- 

10 NASA-Langley, 1970 - 30 
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-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL  PUBLICATIONS 

TECHNICAL  REPORTS: Scientific and  TECHNICAL  TRANSLATIONS:  Information 
technical information considered important, published in a foreign language  considered 
complete, and a lasting  contribution to existing  to  merit  NASA  distribution  in English. 
knowledge. 

TECHNICAL  NOTES:  Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL  MEMORANDUMS: 
Information receiving limited  distribution 
because of preliminary data, security classifica- 
tion, or other reasons. 

CONTRACTOR  REPORTS: Scientific and 
technical information  generated  under a NASA 
contract  or  grant  and considered an  important 
contribution  to  existing knowledge. 

SPECIAL PUBLICATIONS:  Information 
derived from or of value to NASA activities. 
Publications  include  conference  proceedings, 
monographs,  data  compilations, handbooks, 
sourcebooks,  and  special  bibliographies. 

TECHNOLOGY  UTILIZATION 
PUBLICATIONS:  Information  on technology 
used by NASA  that may be of particular 
interest  in  commercial and  other non-aerospace 
applications.  Publications  include Tech Briefs, 
Ttchnology  Utilization  Reports and Notes, 
and Technology Surveys. 

Details  on  the  availability of these  publicafions  may  be  obfained from: 

SCIENTIFIC AND TECHNICAL  INFORMATION  DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546 


